
F Fermi National Accelerator Laboratory

FERMILAB-Pub-00/085-E

CDF

Direct Measurement of the W Boson Width
in pp̄ Collisions at

p
s = 1.8 TeV

T. Affolder et al.

The CDF Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

May 2000

Submitted to Physical Review Letters

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.



CDF/PUB/ELECTROWEAK/PUBLIC/5148
Fermilab-Pub-00/085-E

V1.6 2000-04-15

Direct Measurement of the W Boson Width in pp Collisions at
p
s = 1:8 TeV

(April 15, 2000)

T. A�older,21 H. Akimoto,43 A. Akopian,36 M. G. Albrow,10 P. Amaral,7 S. R. Amendolia,32 D. Amidei,24

K. Anikeev,22 J. Antos,1 G. Apollinari,10 T. Arisawa,43 T. Asakawa,41 W. Ashmanskas,7 M. Atac,10 F. Azfar,29 P. Azzi-
Bacchetta,30 N. Bacchetta,30 M. W. Bailey,26 S. Bailey,14 P. de Barbaro,35 A. Barbaro-Galtieri,21 V. E. Barnes,34

B. A. Barnett,17 M. Barone,12 G. Bauer,22 F. Bedeschi,32 S. Belforte,40 G. Bellettini,32 J. Bellinger,44 D. Benjamin,9

J. Bensinger,4 A. Beretvas,10 J. P. Berge,10 J. Berryhill,7 B. Bevensee,31 A. Bhatti,36 M. Binkley,10 D. Bisello,30

R. E. Blair,2 C. Blocker,4 K. Bloom,24 B. Blumenfeld,17 S. R. Blusk,35 A. Bocci,32 A. Bodek,35 W. Bokhari,31

G. Bolla,34 Y. Bonushkin,5 D. Bortoletto,34 J. Boudreau,33 A. Brandl,26 S. van den Brink,17 C. Bromberg,25

M. Brozovic,9 N. Bruner,26 E. Buckley-Geer,10 J. Budagov,8 H. S. Budd,35 K. Burkett,14 G. Busetto,30 A. Byon-
Wagner,10 K. L. Byrum,2 P. Cala�ura,21 M. Campbell,24 W. Carithers,21 J. Carlson,24 D. Carlsmith,44 J. Cassada,35

A. Castro,30 D. Cauz,40 A. Cerri,32 A. W. Chan,1 P. S. Chang,1 P. T. Chang,1 J. Chapman,24 C. Chen,31

Y. C. Chen,1 M. -T. Cheng,1 M. Chertok,38 G. Chiarelli,32 I. Chirikov-Zorin,8 G. Chlachidze,8 F. Chlebana,10

L. Christofek,16 M. L. Chu,1 C. I. Ciobanu,27 A. G. Clark,13 A. Connolly,21 J. Conway,37 J. Cooper,10 M. Cordelli,12

J. Cranshaw,39 D. Cronin-Hennessy,9 R. Cropp,23 R. Culbertson,7 D. Dagenhart,42 F. DeJongh,10 S. Dell'Agnello,12

M. Dell'Orso,32 R. Demina,10 L. Demortier,36 M. Deninno,3 P. F. Derwent,10 T. Devlin,37 J. R. Dittmann,10

S. Donati,32 J. Done,38 T. Dorigo,14 N. Eddy,16 K. Einsweiler,21 J. E. Elias,10 E. Engels, Jr.,33 W. Erdmann,10

D. Errede,16 S. Errede,16 Q. Fan,35 R. G. Feild,45 C. Ferretti,32 R. D. Field,11 I. Fiori,3 B. Flaugher,10 G. W. Foster,10

M. Franklin,14 J. Freeman,10 J. Friedman,22 H. Frisch,7 Y. Fukui,20 S. Galeotti,32 M. Gallinaro,36 T. Gao,31 M. Garcia-
Sciveres,21 A. F. Gar�nkel,34 P. Gatti,30 C. Gay,45 S. Geer,10 D. W. Gerdes,24 P. Giannetti,32 P. Giromini,12

V. Glagolev,8 M. Gold,26 J. Goldstein,10 A. Gordon,14 A. T. Goshaw,9 Y. Gotra,33 K. Goulianos,36 C. Green,34

L. Groer,37 C. Grosso-Pilcher,7 M. Guenther,34 G. Guillian,24 J. Guimaraes da Costa,14 R. S. Guo,1 R. M. Haas,11

C. Haber,21 E. Hafen,22 S. R. Hahn,10 C. Hall,14 T. Handa,15 R. Handler,44 W. Hao,39 F. Happacher,12 K. Hara,41

A. D. Hardman,34 R. M. Harris,10 F. Hartmann,18 K. Hatakeyama,36 J. Hauser,5 J. Heinrich,31 A. Heiss,18

M. Herndon,17 B. Hinrichsen,23 K. D. Ho�man,34 C. Holck,31 R. Hollebeek,31 L. Holloway,16 R. Hughes,27 J. Huston,25

J. Huth,14 H. Ikeda,41 J. Incandela,10 G. Introzzi,32 J. Iwai,43 Y. Iwata,15 E. James,24 H. Jensen,10 M. Jones,31

U. Joshi,10 H. Kambara,13 T. Kamon,38 T. Kaneko,41 K. Karr,42 H. Kasha,45 Y. Kato,28 T. A. Kea�aber,34 K. Kelley,22

M. Kelly,24 R. D. Kennedy,10 R. Kephart,10 D. Khazins,9 T. Kikuchi,41 B. Kilminster,35 M. Kirby,9 M. Kirk,4

B. J. Kim,19 D. H. Kim,19 H. S. Kim,16 M. J. Kim,19 S. H. Kim,41 Y. K. Kim,21 L. Kirsch,4 S. Klimenko,11

P. Koehn,27 A. K�ongeter,18 K. Kondo,43 J. Konigsberg,11 K. Kordas,23 A. Korn,22 A. Korytov,11 E. Kovacs,2

J. Kroll,31 M. Kruse,35 S. E. Kuhlmann,2 K. Kurino,15 T. Kuwabara,41 A. T. Laasanen,34 N. Lai,7 S. Lami,36

S. Lammel,10 J. I. Lamoureux,4 M. Lancaster,21 G. Latino,32 T. LeCompte,2 A. M. Lee IV,9 K. Lee,39 S. Leone,32

J. D. Lewis,10 M. Lindgren,5 T. M. Liss,16 J. B. Liu,35 Y. C. Liu,1 N. Lockyer,31 J. Loken,29 M. Loreti,30

D. Lucchesi,30 P. Lukens,10 S. Lusin,44 L. Lyons,29 J. Lys,21 R. Madrak,14 K. Maeshima,10 P. Maksimovic,14

L. Malferrari,3 M. Mangano,32 M. Mariotti,30 G. Martignon,30 A. Martin,45 J. A. J. Matthews,26 J. Mayer,23

P. Mazzanti,3 K. S. McFarland,35 P. McIntyre,38 E. McKigney,31 M. Menguzzato,30 A. Menzione,32 C. Mesropian,36

T. Miao,10 R. Miller,25 J. S. Miller,24 H. Minato,41 S. Miscetti,12 M. Mishina,20 G. Mitselmakher,11 N. Moggi,3

E. Moore,26 R. Moore,24 Y. Morita,20 A. Mukherjee,10 T. Muller,18 A. Munar,32 P. Murat,10 S. Murgia,25 M. Musy,40

J. Nachtman,5 S. Nahn,45 H. Nakada,41 T. Nakaya,7 I. Nakano,15 C. Nelson,10 D. Neuberger,18 C. Newman-
Holmes,10 C.-Y. P. Ngan,22 P. Nicolaidi,40 H. Niu,4 L. Nodulman,2 A. Nomerotski,11 S. H. Oh,9 T. Ohmoto,15

T. Ohsugi,15 R. Oishi,41 T. Okusawa,28 J. Olsen,44 W. Orejudos,21 C. Pagliarone,32 F. Palmonari,32 R. Paoletti,32

V. Papadimitriou,39 S. P. Pappas,45 D. Partos,4 J. Patrick,10 G. Pauletta,40 M. Paulini,21 C. Paus,22 L. Pescara,30

T. J. Phillips,9 G. Piacentino,32 K. T. Pitts,16 R. Plunkett,10 A. Pompos,34 L. Pondrom,44 G. Pope,33 M. Popovic,23

F. Prokoshin,8 J. Proudfoot,2 F. Ptohos,12 O. Pukhov,8 G. Punzi,32 K. Ragan,23 A. Rakitine,22 D. Reher,21

A. Reichold,29 W. Riegler,14 A. Ribon,30 F. Rimondi,3 L. Ristori,32 W. J. Robertson,9 A. Robinson,23 T. Rodrigo,6

S. Rolli,42 L. Rosenson,22 R. Roser,10 R. Rossin,30 A. Safonov,36 W. K. Sakumoto,35 D. Saltzberg,5 A. Sansoni,12

L. Santi,40 H. Sato,41 P. Savard,23 P. Schlabach,10 E. E. Schmidt,10 M. P. Schmidt,45 M. Schmitt,14 L. Scodellaro,30

A. Scott,5 A. Scribano,32 S. Segler,10 S. Seidel,26 Y. Seiya,41 A. Semenov,8 F. Semeria,3 T. Shah,22 M. D. Shapiro,21

P. F. Shepard,33 T. Shibayama,41 M. Shimojima,41 M. Shochet,7 J. Siegrist,21 G. Signorelli,32 A. Sill,39 P. Sinervo,23

P. Singh,16 A. J. Slaughter,45 K. Sliwa,42 C. Smith,17 F. D. Snider,10 A. Solodsky,36 J. Spalding,10 T. Speer,13

1



P. Sphicas,22 F. Spinella,32 M. Spiropulu,14 L. Spiegel,10 J. Steele,44 A. Stefanini,32 J. Strologas,16 F. Strumia, 13 D.
Stuart,10 K. Sumorok,22 T. Suzuki,41 T. Takano,28 R. Takashima,15 K. Takikawa,41 P. Tamburello,9 M. Tanaka,41

B. Tannenbaum,5 W. Taylor,23 M. Tecchio,24 P. K. Teng,1 K. Terashi,41 S. Tether,22 D. Theriot,10 R. Thurman-Keup,2

P. Tipton,35 S. Tkaczyk,10 K. Tollefson,35 A. Tollestrup,10 H. Toyoda,28 W. Trischuk,23 J. F. de Troconiz,14 J. Tseng,22

N. Turini,32 F. Ukegawa,41 T. Vaiciulis,35 J. Valls,37 S. Vejcik III,10 G. Velev,10 R. Vidal,10 R. Vilar,6 I. Volobouev,21

D. Vucinic,22 R. G. Wagner,2 R. L. Wagner,10 J. Wahl,7 N. B. Wallace,37 A. M. Walsh,37 C. Wang,9 C. H. Wang,1

M. J. Wang,1 T. Watanabe,41 D. Waters,29 T. Watts,37 R. Webb,38 H. Wenzel,18 W. C. Wester III,10 A. B. Wicklund,2

E. Wicklund,10 H. H. Williams,31 P. Wilson,10 B. L. Winer,27 D. Winn,24 S. Wolbers,10 D. Wolinski,24 J. Wolinski,25

S. Wolinski,24 S. Worm,26 X. Wu,13 J. Wyss,32 A. Yagil,10 W. Yao,21 G. P. Yeh,10 P. Yeh,1 J. Yoh,10 C. Yosef,25

T. Yoshida,28 I. Yu,19 S. Yu,31 Z. Yu,45 A. Zanetti,40 F. Zetti,21 and S. Zucchelli3

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439

3 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
4 Brandeis University, Waltham, Massachusetts 02254

5 University of California at Los Angeles, Los Angeles, California 90024
6 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

7 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
8 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

9 Duke University, Durham, North Carolina 27708
10 Fermi National Accelerator Laboratory, Batavia, Illinois 60510

11 University of Florida, Gainesville, Florida 32611
12 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

13 University of Geneva, CH-1211 Geneva 4, Switzerland
14 Harvard University, Cambridge, Massachusetts 02138
15 Hiroshima University, Higashi-Hiroshima 724, Japan

16 University of Illinois, Urbana, Illinois 61801
17 The Johns Hopkins University, Baltimore, Maryland 21218

18 Institut f�ur Experimentelle Kernphysik, Universit�at Karlsruhe, 76128 Karlsruhe, Germany
19 Korean Hadron Collider Laboratory: Kyungpook National University, Taegu 702-701; Seoul National University, Seoul 151-742; and

SungKyunKwan University, Suwon 440-746; Korea
20 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
21 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720

22 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
23 Institute of Particle Physics: McGill University, Montreal H3A 2T8; and University of Toronto, Toronto M5S 1A7; Canada

24 University of Michigan, Ann Arbor, Michigan 48109
25 Michigan State University, East Lansing, Michigan 48824
26 University of New Mexico, Albuquerque, New Mexico 87131

27 The Ohio State University, Columbus, Ohio 43210
28 Osaka City University, Osaka 588, Japan

29 University of Oxford, Oxford OX1 3RH, United Kingdom
30 Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

31 University of Pennsylvania, Philadelphia, Pennsylvania 19104
32 Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy

33 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
34 Purdue University, West Lafayette, Indiana 47907
35 University of Rochester, Rochester, New York 14627
36 Rockefeller University, New York, New York 10021
37 Rutgers University, Piscataway, New Jersey 08855

38 Texas A&M University, College Station, Texas 77843
39 Texas Tech University, Lubbock, Texas 79409

40 Istituto Nazionale di Fisica Nucleare, University of Trieste/ Udine, Italy
41 University of Tsukuba, Tsukuba, Ibaraki 305, Japan
42 Tufts University, Medford, Massachusetts 02155

43 Waseda University, Tokyo 169, Japan

2



44 University of Wisconsin, Madison, Wisconsin 53706
45 Yale University, New Haven, Connecticut 06520

Abstract

This Letter describes a direct measurement of theW boson total decay width, �W , using the Collider
Detector at Fermilab. The measurement uses an integrated luminosity of 90 pb�1, collected during
the 1994{1995 run of the Fermilab Tevatron pp collider. The width is determined by normalizing
predicted signal and background distributions to 49844 W ! e� candidates and 21806 W ! ��

candidates in the transverse-mass region MT < 200 GeV and then �tting the predicted shape to the
438 electron events and 196 muon events in the high-MT region, 100 < MT < 200 GeV. The result
is �W = 2:04 � 0:11 (stat) �0:09 (syst) GeV.

13.38.Be

The masses and coupling strengths of the gauge bosons that mediate the known forces are fundamental parameters
in the Standard Model (SM). The W boson width, �W , is precisely predicted in terms of these masses and couplings.

The leptonic partial width �(W ! `�) for the lepton ` can be expressed as GFM
3
W =6

p
2�(1+ÆSM) in terms of the well-

measured muon decay constant GF , theW boson massMW , and a small (< 1
2%) radiative correction ÆSM to the Born-

level expression [1]. Dividing the partial width by the branching ratio, B(W ! `�) = 1=(3+6(1+�s(MW )=�+O(�2s))),
gives the SM prediction for the full width of the W boson, �W = 2:093� 0:002 GeV [2].

The W width has been measured indirectly using the ratio R � �B(pp!W!`�)
�B(pp!Z0!`+`�) [3], with a current precision of

50 MeV [4], by assuming SM values for �(W )=�(Z) and �(W ! `�) and using the LEP measurement of the branching
ratio B(Z ! `+`�). Direct measurements of �W from lineshape analyses have been reported in pp collisions with a
precision of 320 MeV [5] and in e+e� collisions where presently the most precise measurement has an uncertainty of
375 MeV [6].
The CDF collaboration previously reported [5] a direct measurement of theW width using an integrated luminosity

of 20 pb�1 of W ! e� data collected by CDF during the 1992-1993 run of the Fermilab Tevatron collider. This Letter
extends that measurement, using a 90 pb�1 sample ofW ! e� andW ! �� data collected by CDF during the period
from January 1994 to July 1995.
This paper presents a measurement of �W obtained in studies of the transverse-mass spectra of leptonic W decays.

The transverse mass is de�ned as MT �
q
2P `

TP
�
T [1� cos(��)], where ` = e or �, P `

T and P �
T are the transverse

momenta [7] of the charged lepton and neutrino, and �� is the azimuthal angle between them. The transverse-mass
spectrum exhibits a Jacobian edge at the W mass. Events withMT > MW arise due to a combination of the non-zero
W width and the detector resolution. A precise �W measurement from the high-mass tail is possible, however, because
the width component of the high-MT lineshape falls o� much more slowly than the resolution component. In this
analysis the W width is determined from a binned log-likelihood �t to the transverse-mass distribution in the region
100 < MT < 200 GeV. The choice MT > 100 GeV minimizes the sum in quadrature of systematic and statistical
uncertainties.
The portions of the CDF detector relevant to this analysis are described briey below. Detailed descriptions can

be found elsewhere [8]. Electromagnetic and hadronic calorimeters, arranged in a projective tower geometry, cover
the pseudorapidity range j�j < 4:2. In the region j�j < 1:0, a lead/scintillator electromagnetic calorimeter (CEM)

measures electron energies with resolution �(E)=E = 13:5%=
p
ET (GeV)�1:5%. A cylindrical drift chamber (CTC),

immersed in a 1.4 T solenoidal magnetic �eld, tracks charged particles in the range j�j < 1:0 with vertex-constrained
momentum resolution �(pT )=pT = 0:09%�pT (GeV). A system of drift chambers and steel absorber identi�es muons
in the region j�j < 1:0. Finally, a time-projection chamber (VTX) �nds pp interaction vertices along the z axis.
Candidate W ! e� events are required to have an electron in the central barrel region of the detector (j�j < 1:0)

with CEM transverse energy Ee
T > 25 GeV and CTC transverse momentum peT > 15 GeV. The electron track must be

isolated in the CTC, having no other track with pT > 1 GeV within a cone in the �-� space of
p
(��)2 + (��)2 = 0:25

centered on the electron. The ratio of energy in the hadron (Had) and electromagnetic (CEM) calorimeter towers
of the electron cluster is required to satisfy EHad=ECEM < 0:055 + 0:00045E (GeV). The electron shower must be
contained within a �ducial region of the CEM, away from calorimeter cell boundaries, and have a pro�le consistent
with test-beam data.
Candidate W ! �� events must have a CTC track with transverse momentum p�T > 25 GeV. The CTC track must

be well matched to a track segment in the muon chambers. The signal in the electromagnetic and hadronic calorimeters
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must be consistent with the passage of a minimum-ionizing particle, satisfying ECEM < 2 GeV and EHad < 6 GeV.
Trigger prescale factors, trigger eÆciency, and limited azimuthal coverage reduce the W ! �� acceptance by a factor
� 2 with respect to the W ! e� acceptance [9].
In bothW ! e� andW ! �� candidate events, a transverse momentum imbalance is required to signal the presence

of the neutrino. The missing transverse energy, ~6ET � �( ~P `
T + ~u), must satisfy 6ET >25 GeV, where P `

T denotes Ee
T

for electrons or p�T for muons. The recoil transverse energy vector, ~u, is de�ned as
P

i Ei sin �i(cos�i; sin�i), for
calorimeter towers i with j�j < 3:6, excluding those traversed by the charged lepton. The vector �~u, which includes
initial state QCD radiation, underlying event energy, and the products of overlapping pp interactions, is an estimator
of the transverse momentum of the W . To reduce backgrounds and improve transverse mass resolution, the recoil
energy must satisfy u < 20 GeV. To ensure good measurements in the drift chamber and calorimeters, both electrons
and muons must pass through all 84 layers of the CTC and must originate from an event vertex located within 60 cm
of the detector center along the z axis. Events consistent with cosmic rays or Z ! `+`� decays are removed. The
W ! e� sample consists of 49844 events in the range 40 < MT < 200 GeV; the W ! �� sample consists of 21806
events with transverse masses in the same range.
Several background processes can mimic the W signal. The process W ! �� ! `��� has a signature similar to

W ! `� decays but at lower MT . The process Z ! ee, where one electron is detected and the other is lost because
it falls into an uninstrumented region of the detector, can produce the signature of an electron and 6ET ; similarly,
a Z ! �� event can pass the W ! �� selection if one muon is outside the j�j acceptance of the CTC. Multijet
backgrounds from QCD processes arise when one jet fragments into a single particle that mimics a charged lepton
and another is mismeasured to produce an energy imbalance. A Monte Carlo simulation normalized to the W ! `�
data is used to predict the W ! �� and Z ! `+`� backgrounds. The QCD contribution is estimated from a study
of non-isolated leptons in the data. Table I summarizes the background contributions for the W ! e� and W ! ��
samples. In the MT > 200 GeV region, 23 W ! l� candidates are observed, consistent with the expectation of 20� 5
events.
Since the W and Z bosons share a common production mechanism and are close in mass, Z ! `+`� decays are

used extensively to model the detector's response to W ! `� events. Samples of Z ! ee and Z ! �� candidates
are selected using the same charged-lepton requirements as for W ! `� candidates, with the exception that one
muon from each Z ! �� pair is subjected to less stringent �ducial requirements. The invariant mass must fall in
the window 70 < M `` < 110 GeV and the boson transverse momentum must satisfy PZ

T < 50 GeV. There are 2012
Z ! ee and 1830 Z ! �� candidates, with negligible background. Using the LEP values of the Z-boson mass and
width [2], the scales and resolutions of the lepton energy and momentum measurements are extracted from a �t to
the Z-candidate M `` spectra. Additional �ts to the Z data constrain the boson transverse-momentum spectra and
provide an empirical model of the recoil response ~u as a function of P ``

T . Details of the recoil model can be found in
Refs. [9,10].
The W transverse mass spectrum is modeled using a Monte Carlo simulation that generates lowest-order diagrams

of W production, qq !W , according to an energy-dependent Breit-Wigner distribution:

�(ŝ) � ŝ

(ŝ�M2
W )2 + ŝ2�2W =M

2
W

;

where
p
ŝ is the (generally o�-shell) l� mass. The MRS-R2 [11] parton distribution functions are used. The e�ects of

higher order QCD diagrams for W production are included by giving the W bosons transverse momenta according to
a �t to the boson momentum spectra in the Z ! `+`� samples; a theoretical calculation [12] allows the W transverse
momentum spectrum to be derived from the Z transverse momentum spectrum. The generator includes the e�ect of
W ! `� decays, and the e�ect of photon radiation on the lepton selection is accounted for in a detailed simulation.
The lepton momenta are passed through a simulation of the detector response, which includes a parametric model of
the ~u measurement as a function of boson transverse momentum. The same kinematic and geometric cuts as in the
data are applied in the simulation.
The simulation produces MT spectra for a range of �W values, from 1.0 to 3.0 GeV in 50 MeV intervals. Each

spectrum is normalized to the number of expected signal events in the region MT < 200 GeV, and background
shapes at the rates shown in Table I are added to the predicted spectra. A binned likelihood �t in 1 GeV bins
over the region 100 < MT < 200 GeV returns �W = 2:175 � 0:125 (stat) GeV for the electron channel and �W =
1:780�0:195 (stat) GeV for the muon channel. Figure 1 shows the data with the best �ts and normalized background
shapes superimposed.
The systematic uncertainties in this measurement of theW width are due to e�ects that alter the shape of the trans-

verse mass distribution. The most important sources of uncertainty are non-linearity of the CEM ET measurement
(relevant only for electrons), recoil modeling, the W transverse momentum spectrum, and backgrounds. To estimate
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the uncertainties due to these e�ects, these parameters are varied in the simulation and the simulated transverse mass
spectra with the varied input parameters are �t to the nominal templates.
Linearity of the CEM energy measurement is studied by comparing CEM energies to CTC momenta over the range

of energies spanned by electrons from theW and Z data samples. A �t to the form Emeas=Etrue = 1+�(Emeas
T �hET i)

yields � = (2:9 � 1:3) � 10�4 GeV�1; a study of  ! ee and � ! ee events yields a consistent value of �. CEM
energies in the data are corrected event-by-event for this e�ect. Taking the uncertainty on � to be �2:9�10�4 GeV�1

shifts �W in the simulation by �60 MeV. A study of  ! ��, � ! ��, and Z ! �� resonances �nds no evidence
for non-linearity in the momentum measurement. Varying the linearity of the momentum measurement within the
bounds allowed by the data changes the muon-channel W width by only 5 MeV in the simulation.
The parameters of the recoil model are varied according to the covariance matrices obtained in the �ts of ~u as

a function of P ``
T in the Z data. Because the e and � analyses use independent �ts to their respective Z ! `+`�

samples, the uncertainties are di�erent for the two channels and are statistically independent. The e�ect on �W is
60 MeV in the electron channel and 90 MeV in the muon channel. Similarly, the statistical uncertainty in the �ts to
the transverse momentum spectra of the two Z boson samples yields a �W error of 55 MeV in the electron channel
and 70 MeV in the muon channel. Varying the background predictions within the errors quoted in Table I changes
the electron result by 30 MeV and the muon result by 50 MeV.
Varying the muon identi�cation cuts in the data and the muon acceptance model in the simulation yield a combined

�W error of 40 MeV. To check the detector simulation used in the electron analysis, a sample generated using an
independent simulation program is �t with the standard �W templates and found to agree; the statistical precision
of the the check, 30 MeV, is taken as a systematic uncertainty.
Fits to the Z ! `+`� mass spectra determine both the CEM energy and CTC momentum scales to 0.1%. Varying

these scales by 0.1% in the simulation changes �W by 20 MeV and 15 MeV respectively in the electron and muon
analyses. Varying the CEM and CTC resolutions within the uncertainties allowed by �ts to the Z mass spectra varies
�W by 10 MeV and 20 MeV respectively.
Monte Carlo spectra have been generated using a variety of modern parton distribution functions, including a set

whose d=u ratio was modi�ed [13] to span the range allowed by CDF measurements of the rapidity asymmetry in
W ! `� decay. The RMS shift in �W is 15 MeV in both channels. Varying the W mass by the current world average
uncertainty of 40 MeV [4,14] from the central value 80.40 GeV changes �W by 10 MeV in each channel. Finally a
study comparing W ! `� and W ! `� in the PHOTOS simulation yields a systematic uncertainty of 10 MeV.
These three �nal sources of uncertainty are common to both analyses.
Uncertainties have been calculated separately for the �t regionsMT > 90 GeV,MT > 100 GeV, andMT > 110 GeV.

While the statistical uncertainty decreases as the cut value is lowered, the systematic uncertainty increases. The
MT > 100 GeV �t minimizes the total uncertainty. The results of the MT > 100 GeV and MT > 110 GeV �ts di�er
by 10 MeV in the electron channel and 60 MeV in the muon channel.
Table II summarizes the sources of uncertainty described above. Combining the e and � results, with a common

error of 25 MeV, yields �W = 2:04� 0:11 (stat) �0:09 (syst) GeV. Including the previously published CDF electron
result [5] with the same common error yields �W = 2:05�0:10 (stat) �0:08 (syst) GeV. The result is in good agreement
with the Standard Model value.
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FIG. 1. Transverse mass spectra (�lled circles) for W ! e� (upper) and W ! �� (lower) data, with best �ts superimposed
as a solid curve. The lower curve in each graph shows the sum of estimated backgrounds. Each inset shows the 50{100 GeV
region on a linear scale.

TABLE I. The numbers of events in the W ! `� signal samples and the estimated numbers of background events.

Channel W ! e� W ! ��

MT region 40{200 100{200 40{200 100{200

Events 49844 438 21806 196

W ! �� 870� 100 4� 2 440� 20 2� 2
Z ! `` 170 � 85 5� 3 760� 30 5� 2
QCD multijets 450� 110 10� 4 175� 15 4� 3
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cosmic rays 0 0 4� 2 0

Backgrounds 1490 � 170 19� 5 1379 � 40 11� 4

TABLE II. The sources of uncertainty on �W for the W ! e� and W ! �� measurements. The last three uncertainties are
common to the electron and muon analyses.

Source �� (e,MeV) �� (�,MeV)

Statistics 125 195

Lepton E or pT non-linearity 60 5
Recoil model 60 90
W PT 55 70
Backgrounds 30 50
Detector modeling, lepton ID 30 40
Lepton E or pT scale 20 15
Lepton resolution 10 20
PDFs (common) 15 15
MW (common) 10 10
QED (common) 10 10

Total systematic 115 135

Total stat + syst 170 235
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